ZASSENHAUS AND LOWER CENTRAL FILTRATIONS OF
PRO-p GROUPS CONSIDERED AS MODULES

by

Oussama Hamza

Abstract. — The goal of this paper is to study the action of groups on Zassenhaus and
lower central filtrations of finitely generated pro-p groups. We shall focus on the semisimple
case. Particular attention is given to finitely presented groups of cohomological dimension
less than or equal to two.

Introduction

Context. — Let G be a finitely generated pro-p group, and denote by A the ring 7Z,
or F,. From A, we recover some filtrations on G. Introduce Al(A,G) := limA[G/U],
where U is an open normal subgroup of GG, the completed group algebra of G' over A.
Since A[G/U] is an augmented algebra over A, then Al(A,G) is also. Consequently, we
denote by Al, (A, G) the n-th power of the augmentation ideal of Al(A,G). Define:

Gn(A) :={geG;g—1€ Al,(A,G)},

this is a filtration of G.

Observe that {G,(F,)}nen denotes the Zassenhaus filtration of G (see for instance
[21]), and is an open characteristic basis of G. Similarly, under certain conditions (see
[16]), the filtration {G,,(Z,)}nen is equal to the lower central series of G, i.e. G1(Z,) = G
and G, 11(Z,) = [Gn(Z,); G]. When the context is clear, we omit to write A for filtrations
(and future associated invariants). Our goal is to study the following Lie algebras:

ZL(A,G) =P ZL.(A,G), where Z,(A,G):=Gn(A)/Gpri1(A), and
neN
E(A,G) = (—Béan(A, G), where &,(A,G):= Al (A G)/Al+1(A,G).
neN
We always assume that 2 (A, G) is torsion-free over A. Notice that this condition
is automatically satisfied when A := IF,, contrary to the case A := Z, (see for instance
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[15, Theorem| and [14, Théoréme 2|). Since G is finitely generated, one defines for every
integer n:

an(A) :=rank, 7, (A, G), and c¢,(A) :=rank,&,(A, G),
gocha(A,t) Z Cut”.

neN
The series gocha(F,,t) was first introduced by Golod and Shafarevich in [8].
allowed them to obtain information on class field towers over some fields (see for instance
[4, Chapter IX]). Later in 1965, Lazard studied analytic pro-p groups in [19], i.e. Lie
groups over Q, (see [19, Définition 3.1.2]). Labute [17], also used the series gocha(Z,,t)
in order to study mild groups and their related properties.

Jennings, Lazard and Labute gave an explicit relation between gocha and (a,)nen
(|19, Proposition 3.10, Appendice A|, and |21, Lemma 2.10]):

gocha(A,t) HP (A, ") an(h
where P(F,,t) := ( = t) , and P(Zy,,t) = <m> _

From Formula (1), Lazard deduced an alternative for the growth of (¢, (F,))nen (for
general references, see |5, Part 12.3|), this is [19, Théoréme 3.11, Appendice A.3]:

Theorem (Alternative des Gocha). — We have the following alternative:

e Either G is an analytic pro-p group, so there exists an integer n such that a,(F,) = 0
and the sequence (¢, (Fp))nen has polynomial growth with n.

e Or G is not an analytic pro-p group, then for every n € N, a,(F,) # 0, and the
sequence (¢, (Fp))nen does admit an exponential growth with n (i.e. grows faster
than any polynomial in n).

In 2016, Minac, Rogelstad and Tan [21] improved Formula (1): they gave an explicit
relation between the sequences (a,)neny and (¢,)nen. The main idea was to introduce the
coefficients b,, € Q, namely defined by:

log(gocha(A,t)) Z b (
neN

They obtained the following formula (|21, Theorem 2.9 and Lemma 2.10]): if we write n =
mp®, with m coprime to p, then

an(Fp) = wm(F ) + Winp(Fp) + -+ + Wippk (Fp),  an(Zy) = wn(Zy);

(2) where w,,(A) : Z pu(n/m)mb,,(A) and p is the Mébius function.

m|n

Notice that the number w,(F,) (resp. c,(Z,),an(Z,)) is denoted by w,(G)
(resp. d,,(G), €,(G)) in [21, Part 2|. Furthermore, Mina¢, Rogelstad and Téan asked the
following question, [21, Question 2.13]:

Do we have ¢,(F,) := c,(Z,)?

Theorem 3.5 answers this question positively when G is finitely presented
and cd(G) < 2. To proceed, we compute (¢,(A))neny by the Lyndon resolution (see



[3, Corollay 5.3]), and as a consequence, we infer an explicit formula for a,(A) us-
ing Formula (2). Weigel (|27, Theorem DJ|) also gave a different formula from (2),
involving a,,(Z,) and roots of 1/gocha(Z,,1).

Statement of main results. — The goal of this paper is to extend equations (1), (2)
and Gocha’s alternative in an equivariant context. We use here the terminology equiv-
ariant to stress the action of groups.

Let g be a prime dividing p—1, and assume that Aut(G) contains a cyclic subgroup A
of order q. We denote by Irr(A) the group of A-irreducible characters y of A, with trivial
character 1: this is a group of order ¢ which does not depend on the choice of A (for
general references on A-characters, see [24, Chapitre 14]). If M is a A[A]-module, one
defines the eigenspaces of M by:

Mx]:={zxeM; YoeA, o(x)=x(d)z}.
Notice that .Z, (A, G) and &,,(A, G) are free, finitely generated over A and are A[A]-
modules. We study the following quantities:
aX(A) :=rank, Z,(A,G)[x], and cX(A):=ranka&, (A, G)[x].

From Maschke’s Theorem and [24, Partie 14.4], we obtain the following equality:

an(A) = >0 aX¥(A), and c(A) = D cX(A).

x€lrr(A) x€lrr(A)

This article has three parts.

Part 1 is mostly inspired by arguments given in [21]. Denote by R[A] the finite
representation ring of A over A. Observe that R[A] is a ring isomorphic to Z[Irr(A)],
consequently R[A] &), Q is a Q-algebra isomorphic to Q[Irr(A)]. Instead of considering
series with coefficients in Q, as Filip [6] and Stix [25] did, we study series with coefficients
in R[A] &, Q. Let us introduce:

gocha™ (A t) := Z Z cX(A)y |t".

neN \ xelrr(A)
We infer an equivariant version of the equality (1):

Theorem A. — The following equality holds for series with coefficients in R[A]:
gocha™(A,t) HHPA)&"“”

neN xelrr(A)

1—x.t 1
X . and P(Zy,t) =
1—x.t 1—x.t

where P, (F,,t) :=

As done in Part 2 [21], one introduces the logarithm of series with coefficients
in R[A], defined by rationals bX(A) € Q:

log(gocha™(A,t)) := Z Z bX(A)y |t".

neN \ xelrr(A)

Then, we obtain an equivariant version of Formula (2).



Write n := mp®, with (m,p) = 1, and assume (n,q) = 1. Then:
aX(F,) = wX (F,) + wy,,(Fp) + - + w;ipk (F,), and aX¥(Z,) = wX(Z,),

(3) where  wX(A) := %2 p(n/m)mbg%m/”(A) e Q.

mln

Some results on the coefficients aX(Z,) were given by Filip [6] and Stix [25] for
groups defined by one quadratic relation.

In Part 2, we study cardinalities of eigenspaces of Z(A,G). When Z(A,G) is
infinite dimensional (as a free module over A), we observe using the pigeonhole principle
that Z (A, G) admits at least one infinite dimensional eigenspace.

Main Question: Which eigenspaces of £ (A, G) are infinite dimensional?

For this purpose, we introduce yo-filtration on Al(A, G), which depends on a fixed non-
trivial irreducible character yo. It is denoted by (Ey, (A, G)),, and described in Sub-
part 2.1. Furthermore, we assume that E,, ,(A, G)/E,, n+1(A, G) is torsion-free over A.
This condition is automatically satisfied when A = [F); and for A = Z,, it is true whenever
G is free or in the situation of [14, Théoréme 2|. This allows us to define gocha,, (A, 1)
by:

gocha,, (A, t) := Z Cyom (A",

neN

where ¢y n(A) :=ranky (E\ (A, G)/Eyynt1(A, G)).

Part 3 illustrates our theoretical results for finitely presented pro-p groups G, with
cohomological dimension cd(G) less than or equal to 2.

Proposition 3.3 allows us to compute the gocha series of (G, and shows that the inverse
of the gocha series is a polynomial. Then Theorem 3.5 answers (and generalizes) [21,
Question 2.13|, showing that gocha(A,t), gocha*(A,t) and gocha,,(A,t) do not depend
on the choice of the ring A. Finally, considering [27, Theorem D| in our context, one
recovers aX from roots of the polynomial 1/gocha* (see Proposition 3.8).

Let us now introduce our last result. Since (Proposition 3.3) Xeuwiyo(t) :=
1/gochay,(t) is a polynomial, we write the degree of Xcuy, as deg, (G). Denote
the yo-eigenvalues of G by A, ;, and let L, (G) be the xo-entropy of G defined by:

deg,  (G)
eu 1) := 1—A Z't, L GZ: A il-
X l7X0< ) H ( X0, ) Xo( ) lgislfile%gfo(G)| X0, |
Theorem B. — Assume for some X that L, (G) is reached for a unique eigenvalue A, ;

such that:

(1) Ay s real,

fi1) Lyy(G) = Ay > L.
Then every eigenspace of £ (A, G) is infinite dimensional.
We also prove in Theorem 3.12, that every finitely generated noncommutative free

pro-p group G satisfies the hypotheses of Theorem B. Let us finish this introduction with
explicit examples:



Ezxzample 1 (Cohomological dimension 2). — Let us take p = 103, ¢ = 17. Observe
that 8 € Fio3 s a primitive 17-th root of unity.

Consider the pro-103 group G, generated by three generators x,vy, z and one relation u =
[z;y]. By |15, Theorem|, the Z,-module £(Z,,G) is torsion-free. If we apply |7, Corol-
lary 5.3] and Proposition 3.3, we remark that ¢cd(G) = 2 and:

gocha(A,t) :=1/(1 — 3t + t?).

Introduce an automorphism 6 on G, by 6(z) := 2%, 6(y) :== v*" and 6(z) := 2% ; Proposi-
tion 3.16 justifies that this action is well defined. Consequently A := {§) is a subgroup of
order 17 of Aut(G). Fiz the character xo: A — Fo3;0 — 8.

Applying Formula (3), let us compute some coefficients aX and cX.
Observe first that:

1

ocha™(A,t) :== - , and
! (%) 1= (X0 + Xx0* + x0°)-t + X0*.t*
3Xo | Xb
log(gocha™ (A, £)) = (xo + Xo” + x0")-t + (x0°/2 + x0” + % + ) £+
9 4 6 3
(%f—+x384—2X07+-—%9%—X84-%§)¢3+-“..

From Formula (2), we infer: ay = 2 and a3 = 5. Furthermore Formula (3) gives us:

: X6 _ pxo’ , X6 _ px¢’
3 = /M 2_ o . and a)® = i Mk ; .
Consequently, we obtain:
o o0 _ Xb _ X6 _ '
ay’ = ay’ =1, else ay® = 0 when 1 # 5.

o % =a =0 =1 andal® = 2. Else if i ¢ {5;6;7;8} b =0

3 — 3 T 3 T & 3 - “ y My by Py B3 T M
Here, by |16, Theorem 1 and Part 3|, the algebra 2, (G, Z,) is torsion-free over Z,.

We have:
1

1—t—1t2
and the maximal xo-eigenvalue of G s real and strictly greater than 1.
Therefore by Theorem B, all eigenspaces of £ (A, G) are infinite dimensional.

gochay, (A, ) :=

Ezample 2 (FAB example). — Following arguments given by [9], we enrich the ex-
ample given in [11, Part 2.1, and obtain an example where G is FAB, i.e. every open
subgroup has finite abelianization (for more details, see Example 3.20, and for references
on FAB groups, see [17] and |20]).

Take p = 3, and consider K := Q(+/—163). Then we define A := Gal(K/Q) =
Z/2Z, and fix xo the non-trivial irreducible character of A over F,. Consider the fol-
lowing set of places in Q: {7,19,13,31,337,43}. The class group of K is trivial, the
primes 7,19,13, 31,337 are inert in K, and the prime 43 totally splits in K.

Define S the primes above the previous set in K, and Kg the mazimal p-extension
unramified outside S. Then A acts on G := Gal(Kg/K), which is FAB by Class Field
Theory.

We can show that the pro-p group G is mild, and Proposition 3.18 gives:

1 1

gocha*(F,,t) := T (67 X0t + (65 xo) 2 and  gocha,,(F,,t) :=

1 —t— 52 + 664



Therefore by Theorem B, all eigenspaces of L (F,, G) are infinite dimensional.

Notations. — We follow the notations and definitions of [1] and [19, Appendice A].

Let p be an odd prime, and G a finitely generated pro-p group with minimal pre-
sentation 1 - R — F' — G — 1, and denote by A one of the rings F, or Z,. Assume
that Aut(G) contains a cyclic subgroup A of order ¢, a prime factor of p — 1. By [10,
Lemma 2.15|, we observe that A lifts to a subgroup of Aut(F).

When the context is clear, we omit the A when denoting filtrations (and associated
invariants). Additionally, we always suppose that £ (A, G) is torsion-free over A.

Denote by Al(A,G) the completed group algebra of G over A and observe that G
embeds naturally into Al(A, G).

For x € Irr(A), we fix {z}}icjcax a lift in F of a basis of £ (A, G)[x], where
dx := rank,.Z (A, G)[x]; by [24, Corollaire 3, Proposition 42, Chapitre 14|, this ba-
sis does not depend on the choice of A. The Magnus isomorphism, from [19, Chapitre
I1, Partie 3|, gives us the following identification of A-algebras between Al(A, F') and the
noncommuative series over X JX 's with coefficients in A:

(4) gt Al(AF) ~ AUX Y x eIr(A), 1 < j <d¥)); ol XX +1

Define E(A) as the algebra A(X}; x € Irr(A), 1 < j < dX)) filtered by deg(X[) =1
and write {E,(A)},ey for its filtration. One introduces (A, R) the ideal of E(A) gener-
ated by {¢a(r — 1);7 € R} endowed with the induced filtration {I,(A, R) := I(A, R) n
E.(A)}uen, and E(A; G) the quotient filtered algebra E(A)/I(A, R), with induced filtra-
tion {F,, (A, G)}nen.

We call M := @, M, a graded locally finite (A[A]-)module, if M, is a finite

dimensional (A[A])-module for every integer n; and denote its Hilbert series by:
M(t) == ) (vanky M,)t".
neN

We make the following convention; we say that M is an A-Lie algebra if M is a graded
locally finite Lie algebra over A, and when A := [, we assume in addition that M is a
restricted p-Lie algebra. Recall the following graded locally finite A[A]-module and A-Lie
algebra, defined at the beginning:

EA) =P E,(A), where &,(A) = E,(A)/En1(A),

neN
L(AG) = P LA G), and EAG) =D& G).
neN neN

If P:= 3% yput" and Q := Y qut" are two series with real coefficients, we say
that : P <@ < VneN, p, <q, We denote by p the Mobius function.

1. An equivariant version of Minac¢-Rogelstad-Tan’s results

Recall:

gocha™ (A, t) := 2 Z cix |t" e RIA][[t]],

neN \ xelrr(A)



where R[A] denotes the finite representation ring of A (over A).

1.1. Equivariant Hilbert series. — The aim of this subpart is to prove the following

formula:
gocha™ (A, t) H H P (A, t") “”

neN xelrr(A)

1—x.t? 1
d P.(Z,1):= .
1—x.t’ o (2, 1) 1—x.t

This is Theorem A defined in our introduction.

Definition 1.1. — Let M := @,y M,, be an A-Lie algebra, graded locally finite A[A]-
module, with basis {z,,1;...; Znm, }nen, Where m,, := rank, M,,. We define:

(5)

where P (F,,t) :=

e the graded locally finite module with basis given by words on {mw}neN;je[[l;mn]] by:
- @
neN
moreover, when A :=[F,, we also assume that the p-restricted operation is compat-

ible with the multiplicative structure of U (M);
e the equivariant Hilbert series of M with coefficient in R[A] by:

M*(t) ::Z Z mXx |t"

neN \ xelrr(A)

where mX :=rankyM,[x] for every integer n.

Remark 1.2. — Since the action of A over a graded locally finite module is semi-simple,
it always preserves the grading. Consequently, if M is a graded locally finite A[A]-module,
then the graded locally finite module U (M) is also endowed with a natural structure of
graded locally finite A[A]-module.

We give a well-known result on Lie algebras, telling us that U is a universal enveloping
algebra of M.

Theorem 1.3 (Poincaré-Birkhoff-Witt). — Let M be a graded locally finite A[A]-
module and A-Lie algebra. Then U(M) is a graded locally finite A[A]-module, univer-
sal A-Lie algebra of M.

Proof. — When A := Z,, see for instance [17, Theorem 2.1].
When A :=F,, see for instance |5, Proposition 12.4]. ]

Corollary 1.4. — The set &(A,G) is a graded locally finite, A-universal Lie algebra
of Z(A,G). Consequently &(A,G) is torsion-free.

Proof. — Let us first prove that & (A, () is a graded locally finite, A-universal Lie algebra
of Z(A,G). By Theorem 1.3, we only need to show that U(Z(A,G)) ~ &(A, G).

For A :=T,, see [19, Appendice A, Théoréme 2.6].

For A := Z,, the proof of [12, Theorem 1.3| carries to the case E(Z,,G) with minor
alterations. We consider Z, and Q, rather than Z and Q. Furthermore, we conclude
using the fact that G is finitely generated, so Grad(E(Z,,G)) = &(Z,,G) is isomorphic
to Grad(Z,[G]), where Z,|G] is filtered by power of the augmentation ideal over Z,. O



Remark 1.5. — Notice that &(A,G) is also isomorphic to U(Z(A,G)) as an A[A]-

module. Therefore, we have:

U(Z (A G))*(t) := gocha™(A,t).
Before proving Formula 5, we need the following result:

Lemma 1.6. — Let M be a graded locally finite A[A]-module and A-Lie algebra, then:

o) =11 [T Puaemym™,
neN yelrr(A)
1— .7 1

where P\ (Fp,t) :== T 7 and P (Zy,t) := : .
- X- - X-

Proof. — Let us first prove the case A :=[F,,.
We are inspired by the proof of [5, Corollary 12.13|. Observe that if M and N are
graded locally finite F,[A]-modules, then M () N is also a graded locally finite F,[A]-

module; moreover (M &y N)*(t) := M*(t)N*(t), and UM@N) =UM) X, U(N).

So assume that :

M*(t) := Z mpxo-t",  for some fixed and non-trivial yg € Irr(A).

Consider X,, := {xp1,...,Tnm,}, an F,[A]-basis of M, where each z, ; is of degree n.
Then a graded locally finite IF,| A]-basis of M is given by the (disjoint) union of all X,’s.
Denote by

UM)*(t) := Z Z uXx |t", where wY := dimg, U(M),[x].

reN \ xelrr(A)

We need to compute u?fz’, where i € Z/qZ: this is the number of products of the form

T Mmn
H H(xn,jxg)m"’j, where 0<m,; <p-—1,
n=1j=1

such that

T Mn T Mn
Z Z nmy,; =r and Z Z my; =1 (mod q).
n=1j=1 n=1j=1

Notice that the coefficient before ¢ of the polynomial

T

[0+ xot™ + -+ X e

n=1

is

r Mn T Mnp
Z Xo"™ | t", where 0<m,; <p—1, and Z Z My, j = T.
n=1 \j=1 n=1j=1

Consequently the coefficient before x{t" is exactly ul.

Let us now prove the case A := Z,.
By the Poincaré-Birkhoff-Witt Theorem, the set U(M) is the symmetric Lie algebra



over M. Similarly to the previous case, we just need to study the case where there exists
a unique xo such that M*(t) := 3 m,xo.t". We get:

U(M)*(t) = ]:[ ( ! )m .

1-— Xot

One deduces the general case. O]

Proof of Formula (5). — We apply Lemma 1.6 and Corollary 1.4 to obtain:

gocha™ (A, t) HHPAt”“

neN yelrr(A)
1 —x.t? 1
where P, (F,,t) := i’ and P (Zy,t) := T
]
1.2. Proof of Formula (3). — The aim of this part is to prove the following Propo-

sition:
Proposition 1.7. — Write n = mp® with (m,p) = 1 and (n,q) = 1, then:
ay(Fy) = wi(Fp) + wy,(Fp) + - +wy (Fp),  and  a}(Z,) = wi(Zy);
where  wX := —Zu n/m)mbX" " e Q.
mln

This is Formula (3) given in our introduction.
The strategy of the proof is to transform the product formula given by (5), into a
sum in (R[A] ®z Q)[[t]]-

Definition 1.8 (log function). — If P € 1 + tR[A][[t]], we define:

os(P)(1) =~ LT pray e @)

Remark 1.9. — Note that the log function enjoys the following properties:
(i) If P and @ are in 1 + tR[A][[¢]], then:

log(PQ) = log(P) + log(@), and

log(1/P) = —log(P).
(ii) If w is in tR[A][[¢]], then

log<1—u) iu?

Define the sequence (bX(A))neny € QN by:

log(gocha™(A,t)) = Z Z bX(A)y |t".

n=l \ xelrr(A)



Proposition 1.10. — If (n,q) = 1, we infer:

by Z may (F,) — Z rpaX (F,) |, and bX'( Z maX. (Z,).

mln rpln m|n

Proof. — Let us just prove the case A := F, (the case A := Z, is similar).
First, Formula (5) gives us:

1 —x.t"
gocha™(F H H ( X t")
neN xelrr(A) RS

Let us take the logarithm to obtain:

log(gocha™(F,, t)) Z Z aX [log(1 — (x.t")?) — log(1 — x.t")],

n xelrr(A)

so that

X O (p ) & ()P

neN \ xelrr(A) w=1 v=1 r=1
from which we conclude
00] a0
Z n Z bXx |t" = Z Z Z may, — Z rpaXx™") | t".
n=1 xelrr(A) n=1 \ xelrr(A) m|n rp|n

Then we infer:

n m '
nbX :Zma;; —eraff.

mln rpln

Proof of Proposition 1.7. — Again, we just prove the case A := T,
We are inspired by the proof of [21, Theorem 2.9].
First, we assume (n,p) = 1, then by Proposition 1.10, we obtain:

X" X"
nbY = Z may, .
mln
So, using the Md&bius inversion Formula, we obtain:

n

— X" X — qpX
=wyX , thus af =wt

iy
Now, let us assume p divides n. We show by induction on n that:
(%) aX’ = aX” ¢ wX"
e If n = p, then by Proposition 1.10, we have: pbX" = paX” + af — pay. So,
pw;fp = pb;‘p — b = pa;‘p — pay.

' v
Therefore, aX” = ay + wX".

10



e Let us fix n, an integer such that p|n, and assume equation () is true for all m such
that m # n and p|m|n. Then, following Proposition 1.10, we have:

n m ™
nbX = Z may, — Z rpaX

m|n rp|n
o Xm Xm - Xm/P
CON e Y -
m|n;(m,p)=1 plmln
- X" X" X" XM
= Z mwy, + Z mwy, +n<an @),
s (mp) =1 plminsmatn
B X™ X" x"'P
= Z mw;), +n<an Uprp ) -
m|n;m#n

Moreover, by the Mébius inversion formula, we have:

X" X"
nbY = Z muwy, .

mln
Therefore, we obtain:
X" xX® o XMP
nwy =n (an ) -

O

Remark 1.11. — Formula (3) was already given for groups defined by one quadratic
relation by Filip [6, Formula (4.7)] (for C-representations in a geometrical context) and by
Stix [25, Formula (14.16)] (in a Galois-theoretical context). Additionally, they computed
explicitely the coefficients bX(Z,). We discuss this analogy in Theorem 3.8.

Remark 1.12. — Let us reformulate |21, Question 2.13|, asked by Minac¢-Rogelstad-
Tan, in our equivariant context:

Do we have for every integer n and every irreducible character x, the equal-

ity cX(Zy) = cx(Fp)?

Later in this paper, we give a positive answer to this question, when G is finitely
presented and cd(G) < 2 (see Theorem 3.5).

2. Infinite dimensional eigenspaces of £ (A, G)
The goal of this part is to study infinite dimensional eigenspaces (as a free A-module)
of
ZL(A,G) =P L(AG), where Z,(AG):=G,(A)/Grii(A).

neN

For this purpose, we introduce yo-filtrations.

2.1. Definition of y-filtrations. — From now on, we make no distinction be-
tween Z/qZ and the set [1;¢]]. Observe the following isomorphism of groups, which
depends on the choice of a fixed non-trivial irreducible character y:

Uyo: (Ir(A);®) — (Z/qZ; +);  xp — .

11



Recall that ¢, denotes the Magnus’ isomorphism introduced in (4). We define E,,(A)
as the A-algebra A((X};x € hr(A),1 < j < dY)) filtered by deg(X}) = 1, (),
and {E,, ,(A)}nen as its filtration: called the yo-filtration of Al(A, F). We introduce

A) = P Eon(A), where En(A) i= Eyyn(A)/Eyomi(A).

neN

Write 1, (A, R) for the two-sided ideal generated by {¢a(r—1);7 € R} < E,,(A), endowed
with filtration {I,,,(A, R) := I,,(A, R) 0 E\,n(A)}nen; and E, (A, G) the quotient fil-
tered algebra E, (A)/L, (A, R).
Define the following A-module:

Eo(A,G) = @ Eon(A,G), where & (A, G) = Ey (A, G)/Eyynii(A,G).

neN
Introduce:

Gyon(A) :={g€ G;ps(9g —1) € E\, n(A,G)}, and

LA, G) =@ Lyon(A,G), where L n(A,G) = Gyul(A)/Gyynii(A).

neN

We always assume that the A-Lie algebra .Z, (A, G) is torsion-free over A.

Lemma 2.1. — The set &,(A,G) is a graded locally finite, A-universal Lie algebra
of £y, (A,G). Consequently, the graded A-Lie algebra &,,(A, G) is torsion-free.

Proof. — This is similar to the proof of Corollary 1.4. O]

Since G is finitely generated, we define:

gocha,, (A, ) ZCXO n . where ¢, ,(A) :=rank,&, (A, G),

and  ay,n(A) 1= ranka (G, n(A)/Gygni1(A)).

2.2. Properties of yg-filtrations. — This subpart aims to develop various properties
of yo-filtations.

Lemma 2.2. — The modules &,,(A,G) and Z,,(A,G) are graded locally finite A[A]-
modules. More precisely, we have:

rank, &y, (A, G)[x] =cyom(8)50N
rank, %, (A, G)[x] =ayen(A)600Y

where 650N =1 ifn = Uy, (x) (mod q), otherwise o) _ g,

Proof. — Let us denote by Z, n(A,R) := I, n(A, R)/Lyn1(A, R). Remind by [10,
Lemma 2.15|, that A < Aut(F') and A(R) = R. So &,,(A) is a graded locally finite A[A]-
module, and .7, (A, R) is stable by A. By [19, Chapitre I, Résultat 2.3.8.2|, we have
the following exact sequence:

0— Fyn(AR) = Eyn(A) = Eyn(A,G) — 0.

Then &,,(A, G) and .Z,, (A, G) are graded locally finite A[A]-modules. Let us now study
more precisely the A[A]-module structure of &, (A, G) and .2, (A, G).
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For the structure of &, (A, G): take u € &, ,(A) and write u := ijlol ...X;f’u,
with 41 + --- + 4, = n. Therefore, for every 6 € A, §(u) = x{(0)u. Then, we infer for
every x:

(+*) ranky &y, n(A)[x] = rankAé"Xoyn(A)ggXo(X).
Since ranks &y, »(A)[x] = ranks &y, (A, G)[x], we conclude by Equation () that:
ranky &, (A, G)[x] = CXOM&?XO )

For the structure of %, (A, G): note by Lemma 2.1 that &,,(A, G) is a graded locally
finite A|A]-module, universal A-Lie algebra of %, (A, G). Hence for every x, and every n:

ranky &, (A, G)[x] = rank,. %, »(A, G)[x].

This allows us to conclude for every y:

ranky Ly, (A, G)[x] = aygnoi @™

Now, let us compare (¢ygn)nen, (Aygn)nen; (€X)nen and (aX),en.

Proposition 2.3. — The following inequalities hold:

gn+i qn+i
§) < X6 < X6
( ) Cxo,qn+i = Cj » o Oxouqnti aj )
j=n Jj=n
[n—txo 00/l [n—xq (X)/d]
X X
(7) Cn S Z Cxough+ing(x)s On S Z Gxo,qk+txg (X) -
k:["*wXO(X)] k:["*d’XO(X)]

q q

Proof. — Observe first that the A-Lie algebras Z,(A,G), Z(A,G), &,(A,G)
and &(A, G) are generated by {X}. We only check inequalities involving ¢, (proof of
inequalities involving a, are simlar).

Let us prove inequalities (6).
Take win &, gn+i(A, G). Since u is a sum of monomials w; in &, 4n+i(A, G), we can assume
that v is a monomial. So, let us write u = ijlol ...X;fiu, where iy + -+ +1,, = qn + 1.
Consequently for every § € A,

d(u) = xo" (5>ijlgl X0 (5)X;fu thus
5u) = xo" T (B) XL X9 = xi(6)u.

Therefore u € &,.,(A, G)[x4]. To conclude, we need to estimate .

e If i, =1 for all [, then r, = qn + i.

e If i, = ¢ for all [, then gr, = qn + i. Therefore, r, > n.
In any case:

n<r, <qn+i.
Let us now prove inequalities (7).

Take u € &,(A,G)[x]. Since u is a sum of monomials, we can again assume that v is
a monomial. Then by Lemma (2.2), we write v = X;‘l"l ...X;-f)n, with 4y + -+ + 1, =
kq + 1y, (x) for some k. Let us see which values can take k:

13



o if cach i, = 1, one obtains kq + ¥y, (x) = n, and so k > [0}

qn*"/’xo (x) J ]

e if each i; = ¢, one obtains gn = kq + ¢, (x), and so k < | .

In any case:

[%“(”1 < k< |n— v (/.

]

Remark 2.4. — Proposition 2.3 was also given and proved by Anick: Proof of [2, The-
orem 3.

2.3. Some results on the series log(gocha,,(A,t)). — In this subpart, we obtain
information on (ay,,(A))neny. For this purpose, we study the sequence (by,n(A))nen
namely defined by:

log(gocha,, (A, t)) := Z byomt"-

neN

Theorem 2.5. — The following equality holds in N[[t]]:
gocha,, (A, t) = HP(A,t”)“XO’”,

1—1tP 1

ﬁ, and P(Zp,t> = :

Proof. — By Lemma 2.1, &,,(A,G) is a graded locally finite, A-universal Lie algebra
of Z,(A,G). |22, Corollary 2.2] allows us to conclude the case A := F,, and [17,

Proposition 2.5] allows us to conclude the case A := Z,. O

where  P(F,,t) :=

Corollary 2.6. — Let us write n = mp®, with (m,p) = 1, then:

k
axon(Fp) = Z Wyompr (Fp),  and  ayon(Zy) = wyon(Zy);
r=1

1
where Wy, 1= - Z p(n/m)byg m.

mln
Proof. — This proof is similar to the proof of [21, Theorem 2.9]. O
Corollary 2.7. — The following assertions hold:

(i) If x is a non-trivial irreducible character, and there ezists an infinite family of
primes q; = ¢y, (x) (mod ¢q) such that

bxo#li > bx0717

then L (A, G)[x] is infinite dimensional.
(11) If there exists an infinite family of primes (L), such that:

bxosgim = @bxo.q T lmbxo
then Z (A, G)[1] is infinite dimensional.
Proof. — This is a consequence of Corollary 2.6. n

Theorem 2.8. — Assume there exist « > 1 and a constant C' # 0 such that by, , ~
n—a

Ca™/n. Then every eigenspace of £ (A, G) is infinite dimensional.
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Proof. — By Corollary 2.7, we have:
Axo,0i = bxo,(h - be,l/Qz’7 and
Uxoalm = Dxo.qtm — @x0,g = lmbxo b -
Since, by, ~ Ca™/n, we can find families of primes {¢;}; and {,, },, where ¢; and [,,,
n—ao0

are sufficiently big, such that: a,,, > 0, and a,, 4, > 0. Therefore by inequalities (6),
we extract an infinite subsequence of (aX),, which is strictly positive. O

3. Examples

Recall that 1 - R — F' — G — 1 denotes a minimal presentation of GG, and by [10,
Lemma 2.15|, the group A lifts to a subgroup of Aut(F). Keep in mind that Z(A, G)
and %, (A, G) are assumed to be torsion-free over A. Additionally here, G is assumed
finitely presented, with cohomological dimension less than or equal to 2.

Consider the following A[A]-modules:

R(F,) := R/RP|R; F|, and R(Z,):= R/|R;F].

Choose xo a non-trivial element of Irr(A). For every x € Irr(A), we fix {If }1<j<r,
where 7X := ranky R(A), a lifting in F of a basis of R(A)[x]. By [24, Corollaire 3,
Proposition 42, Chapitre 14|, these liftings do not depend on A.

Recall that we defined, using the Magnus isomorphism ¢, given by (4), the filtered
algebras E(A,G) (in Notations) and E, (A, G) (in Subpart 2.1).

Name n} (resp. n} ;) the least integer n such that ¢,(I} — 1) is in E,(A)\E.;1(4A)
(resp. Eyyn(A)\Eyyni1(A)): this is the degree of IS in E(A) (resp. E\,(A)). We show in
Lemma 3.4 that these degrees do not depend on A. Set the series:

X

Xew(A ) =1 —dt+ > ",

xslsjsrx
(A1) =1 =D "dxt+ > xt",
X x;l<g<rx
Xeuto (B, 1) 1= 1= Y P00 4 37 ™0,
X X;1<g<rx
3.1. Generalities. — We give some generalities on groups of cohomological dimension
less than or equal to 2.
3.1.1. Computation of some gocha series. — Let us first recall the Lyndon’s resolution,

which allows us to compute gocha series as inverses of polynomials of the form x... A
general reference is the article of Brumer [3].

Theorem 3.1. — There exists a filtered E(A, G)-module M(A), such that we have the
following exact sequence of filtered E(A, G)-modules:

0 M(A)— @ (Gall¥ —1)E(A,G) -

x;l<g<srx

P (¢alz} —1))E(A,G) - E(A,G) > A — 0.

x;1<g<dx

And the cohomological dimension of G is less than or equal to two if and only if M(A) = 0.
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There exists a filtered E, (A, G)-module M,,(A), such that we have the following
exact sequence of filtered E, (A, G)-modules:

0— MXO (A) - @ (¢A(l;< - 1))EX0 (A7 G) -

x;l<sg<srx
(‘B (qu(ZB;( - 1))EX0(Aa G) - Exo(Aa G) — A —0.

x;1<j<dx

And the cohomological dimension of G is less than or equal to two if and only if M, (A) =
0.

Remark 3.2. — Theorem 3.1 is true for every filtration over Al(A, Q).

Proof. — Let us define the following A-modules:
K(F,) := R/RP[R; R|, and K(Z,):= R/[R;R].

Notice that Al(A,G) acts on K (A) via conjugation (see [13, Part 7.3]).
By [3, Sequence (5.2.2)|, we have the following sequence of Al(A, G)-pseudocompact-
modules:
0— K(A)— @gbA(:c;‘ —1DAI(A,G) - Al(A,G) - A —0.
XJ

By |13, Theorem 7.7|, there exists a Al(A, G)-pseudocompact-module K’(A) such that
we have the exact sequence:

0 — K'(A) = @ oa(lf — 1)AIA,G) — K(A) = 0.

Furthermore ¢d(G) < 2 if and only if K'(A) = 0. Therefore, we obtain the following
resolutions:

0= M(A)— D (eullf —1)E(AG) -
D (ealzf —1)EA,G) — E(A,G) > A—0,

x;1<g<dx

where M (A) is the set K'(A) endowed with its structure of filtered F(A, G)-module, and

0= My(A) » @D (Gallf —1))E(AG) —
x;l<y<rx
@ (¢A(x;( - 1))EX0(A7 G) - EXO(A7 G) — A - 0,
x;1<g<dx
where M, (A) is the set K’(A) endowed with its structure of filtered £, (A, G)-module.
Finally, ¢d(G) <2 «<— K'(A)=0 < M(A)=0 < M, (A) =0. O
Let us now compute gocha series:
Proposition 3.3. — We have the following equivalences:
1
cd(G) €2 < gocha(Ajt) = —— <—
(@) gocha(A, 1) oA
1 1
gocha®(A,t) = ———— <= gocha,(A,t) = —————.
( ) Xeul<A7 t) XO( ) Xeul,xo (A’ t)
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roof. — (One denotes resp. the image of ¢, 1) in resp. épx .
Proof. — Oned by pj (resp. py, ;) the image of g (If—1) in &,x(A) (resp. &x  (A))

By [19, Chapitre I, Formule 2.3.8.2], the functor Grad is exact then we apply [19,
Chapitre II, Proposition 3.1.3] and Theorem 3.1, to obtain the followmg exact sequences
of graded locally finite modules:

(x) 0— Grad(M(A)) — @p;‘é"(A, G) —
P XYEA,G) —> EA,G) — A — 0,

X;J

(x+) 0 — Grad(My,(A)) = @D p}, ;64 (A, G) =
X
P XFEW(A,G) = (A, G) = A—0.
XJ
From Theorem 3.1 and sequence (*), we infer:
cd(G) <2 <= M(A)=0 < Grad(M(A)) =0 < gocha(A,t) = D
eul )

Moreover Theorem 3.1 and sequence (%) give us:
(8) ¢d(G) <2 <= M (A)=0 < Grad(M,,(A)) =0

1
Xeul,xo (A7 t) .

From the choice of the families {7} and {p}}, we infer that the sequence () is exact
in the category of graded locally finite A[A]-modules. This allows us to conclude:

< gochay,(A,t) =

cd(G) <2 <= gocha™(At) = ————.
( ) ( ) Xeul(A7t>

]

3.1.2. Answer to |21, Question 2.13]. — Extending and reformulating [21, Ques-
tion 2.13] in our equivariant context, when G is finitely presented and c¢d(G) < 2, we
show in this Subsubpart that:
The series gocha(A,t), gocha®(A,t) and gocha,,(A,t) do not depend on the
ring A ¢

Lemma 3.4. — Assume that £(Z,,G) is torsion-free. Then, for every j and every x,
the integers ny(A) do not depend on A. Similarly, if £,,(Z,, G) is torsion-free, then the
integers n ;(A) do not depend on A

Proof. — Let us prove that n} does not depend on A. Recall that n}(F,) (resp. n}(Z,))
is the degree of IJ in E(IF,) (vesp. E(Z,)), and p}(IF,) (resp. pj(Z,)) denotes the image
of ¢p, (I — 1) in Enx (Fy,) (resp. ¢z,(If —1) in Enx (Z,)). Notice that we have a filtered

surjection:

EZ,) "7 B(F,), with kernel pE(Z,).
Since the choice of the family {I}};, does not depend on A, we infer that ¢z, (I} — 1) =
(bﬂ?p(l;( — 1) (mod p). Therefore, n;?(Zp) < n;-‘(IFp).
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To show that n}(Z,) = n}(FF,), it is sufficient to show that for every integer j, and
character x, we have p}(Z,) not in p&(Z,).
From |7, Proposition 4.3, we infer the following isomorphism of E(Z,, G)-modules:

K(Zy) := R/|R; R] =~ [(Zy, R)/ EA(Zp) I (Zp, R).

Since, G is of cohomological dimension 2, by [13, Theorem 7.7], we have

H% (X = 1)E(Z,, Q).

Introduce

In(Lp, R) := 1(Zy, R)/In41(Zyp, R), and I(Zy, R): @j (Zy, R).

neN

Then, we observe that

Grad(Ey(Z,)I(Z,, R)) = Grad(l—[ XXE(Zy)I(Zy, R)) = P Grad(X}I(Z,, R))

i,X X
= @XZXJ(ZI” R) = éal(Zp)f(Z%R)'
i,X
Consequently
Grad(K @ PX(Zy)E (L, G) =~ I (Ly, R)/E\(Ly).I (L, R).

Assume now, by contradlctlon, that there exists one integer jo and one character yq
such that p3’(Z,) is in p&(Z,), then there exists u € &(Z,) such that pj’ := pu. Moreover,
since &(Z,, ) is torsion-free, we deduce that u is in #(Z,, R). Therefore, there exist
elements g in &(Z,, G) such that u =3, gp; (mod &(Z,)#(Z,, R)). Consequently:

PR = pu = Zpgj py (mod &(Zy).7 (Zy, R)).

Since the family p} is a basis of the free &(Z,, G)-module .#(Z,, R)/& (Z,)I (Z,, R),

we infer pg;go = 1. This is impossible since p is not invertible in &(Z,, G).

0
Theorem 3.5. — Assume that £ (Z,,G) is torsion-free, then :
gocha(Z,,t) = gocha(F,,t), and gocha®(Z,,t) = gocha*(F,,t).
Furthermore, if Z,,(Z,,G) is torsion-free, then
gochay,(Zy,, t) = gochay, (Fp,t).
Proof. — We apply Proposition 3.3 and Lemma 3.4. O

Remark 3.6. — If we remove the hypothesis that Aut(G) contains a subgroup A of
order ¢, then we still have:

gocha(Z,,t) = gocha(F,,t).

A criterion to obtain finitely presented groups of cohomological dimension less than or
equal to 2 is given by [17]| when p is odd, and by [18| when p = 2.
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3.1.3. Gocha’s series and eigenvalues. — Thanks to Proposition 3.3, we can com-
pute gocha series. Then applying Formulae (2) and (3), we obtain an explicit equation
relating coefficients a,, and aX. However, the computation of b, has complexity n (more
precisely it depends on {¢; b m<n)-

If we consider roots of x..;, we infer a formula for b,, which depends on the arithmetic
complexity of n. The following results are mostly adapted in our context from ideas of
Labute ([15, Formula (1)]) and Weigel (|27, Theorem D).

Let deg(G) be the degree of .., and A; the eigenvalues of G, written as:

deg(Q)

Xeu(t) = [ ] (1= Nit).

i=1
One denotes by M,, the necklace polynomial of degree n:

Z,u n/m

mln

Let us state [27, Theorem D|:

Theorem 3.7. — Assume (n,q) = 1 and write n = mp®, with (m,p) = 1. Then we

infer:
n n k
= Z Ma(Ni),  an(Fy) = 2 Z My (A
i=1 1=1j=0
Proof. — Weigel showed in the proof of |27, Theorem 3.4], that:

S
i=1

Then we conclude using Theorem 3.5 and Formula (2). O

Let us adapt this result in an equivariant context. By a choice of a primitive g-th
root of unity, we have F, = F; < [F),, the algebraic closure of F,. Consider ¢ a non-trivial
element in A, and evaluate x*, in ¢ by:

Xea(@)(8) =1 =Y Xt + Y, x(O)" e Fy[t] = Fyt].

X ;1<j<rx
Define {\s;}1<j<des(c)  F, the eigenvalues of x*,,(6)(t). We introduce .Z (A, F,) the F,-
algebra of functions from A to IET? and:

nit A>Ty 80— Asj
Therefore, we infer:

deg(G
Xeul 1_[ 1_77] Ey(AF)[]

7=1
Consequenlty, if we apply the log function to the previous equality, we obtain:

mo. 4+ 77”2
Z me _ deg(G) )
Xelrr(A) m
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Let us define for every n € Z(A,F,):
* 1 m,(n/m m,\u u\m
M (n) = D —p(n/m)n™ ™, where 5"™)(8) = n(6")
mln

Proposition 3.8. — Let us assume q divides p — 1 and (n,q) = 1. Write n = mpF,
with (m,p) = 1, then:

e N S M, and
X j=1
de

eg(@) k
Z ax Z Z mp* 773
the equality is in the F,-algebra Q(A, F,).

Proof. — Let us remind that b7 := Zx bXx. After making the following change of variable:
v = x™™, we observe that for every § in A, we have

) = = BB = X B = 3 60

x€lrr(A) ~velrr(A)

Consequently, bi™/™ — I bX"'" x. Since mb¥, = " + -+ + Nitea(cy: We obtain:

m/n m m (n/m) m,(n/m n/m
mby " = (" aege) T = Y.
Using Formula (3), the conclusion follows. O

Remark 3.9. — Filip (|6, Formula (4.8)]) and Stix (|25, Formula (14.16)]) also obtained
Proposition 3.8 for some groups defined by one quadratic relation. They computed ex-
plicitely the functions ;.

Ezxzample 3.10. — Let us illustrate Proposition 3.8, with Example 1.
When splitting x¥,, into eigenvalues, we obtain:

Xeu(t) = (L= mt)(1—mat) = 1= (xo + xo + Xo)t + Xot”,
Moreover, mim2 = xg and 171 + 172 = Yo + X& + X& (as functions). Therefore, if we apply
Proposition 3.8, we get:

2 2
e o ox = =+ m2)® = 2mm — (i + )@
0= Ya -

- 2 B 2
X XOFXOF2X0 22X 22X —2X0 — XG—Xo— X0 a4, s
= 5 = Xo *+ Xo-
Let us now compute a}. For this purpose, we first observe that
0+ 15 = (o + X5 + x0)” — 3(xo + X5 + X0)Xo
= Xo + 3x0 + 6xg + 4x0 + 3x0 + Xo-
Therefore, we have:
3 3 3) (3) 3 3 (3)
+n3 - — + 03— (m +
at = Za%( _ e 3771 2 _Th Tk z())771 12) _ Xg +X8 i ZXS +X§-

X
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Let us conclude this subpart by proving Theorem B given in our introduction.

Theorem 3.11. — Assume that £ (A,G) is infinite dimensional and for some xo
that L,,(G) is reached for a unique eigenvalue A\, such that:

(i) Ay, is real,
(1) Ly (G) = Ao > 1.
Then every eigenspace of Z (A, G) is infinite dimensional.

Proof. — We study the asymptotic behaviour of (by, »)nen. By Proposition 3.3, we have:
1
Xeul,xo (t) .

Let us denote by {\i;...;\,} the real yg-eigenvalues of G and {B,e*%; .. ; 3,e*%} the
polar forms of non real y-eigenvalues of G. Without loss of generality, assume that A, :=
A1. Let us write

gochay,(t) :=

u v

Xeutalt) = [ [0 =2) [J( = gie )1 = ge=0)

i=1 j=1

Then, we obtain:

3 D AT+ 2 B (e 4 e

n

1og(Xeut,xo () = t".

neN

Thus by,,, ~ CA}/n, for some C > 0. We conclude by Theorem 2.8. O
n—oo

3.2. Group Theoretical examples. —

3.2.1. Free pro-p groups. — In this subpart, assume that G is a free finitely generated
pro-p group. Observe that Z(Z,,G) and .Z,,(Z,, G) are torsion-free.

Theorem 3.12. — Assume that G is a noncommutative free pro-p group, then every
eigenspace of L (A, G) is infinite dimensional.

Proof. — Let us fix a non-trivial character yg € Irr(A), such that dX° < dX for every
non-trivial x. Then we have Xeu () := 1 — 27 d¥0t". Set s a minimal positive real
root of Xeur,,- We will show that s is the unique root of minimal absolute value of Xecu,y,-

We have:

q o q—2 '
0=1 —Zd%sZ < l—dXOSZs’—dlsq <1—d¥s—d'si.
1=1 i=0

Then dX°s + d"s? < 1. Thus s < min{1/dX°; (1/d")"?}, s0 0 < s < 1.

If we denote by z a complex root (not in ]0;1[) of Xeu,y,, then we notice by the
triangle inequality, that Xy, (|2]) < Xeuto(2) = 0. Therefore |z| > s.

Consequently, Xecu,y, admits a unique root s of minimal absolute value which is
in |0; 1[. Therefore, by Theorem B, we conclude. ]

Let us give some examples.
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Example 3.13. — Consider A := Z/27, and fix o the non-trivial irreducible character
of A over A. Assume that G is a free pro-p group with two generators {z,y}, and A
acts on G by: §(z) = z, §(y) = y~!. Then following our notations, we have: z = 2!,
and y = xX0. Observe that Al(A,G) is a free algebra on two variables over A.

Let us first compute some coefficients aX, with Formula (3). We have:

1 (1 + Xo)n
ocha*(A,t) .= ——  and log(gocha®(A,t)) .= » ———t".
g (A7) ()t g(g (A7) Zn: -
So
h= e =2 A =y =2
22n 1 22n—1
b3ns1 = Dini1 = ma1 and by, = by, = o
Assume for instance p # 3, then one obtains:
22 — 1
ay’ = 3 =1, and af=1.

Observe by Theorem 3.12, that every eigenspace of £ (A, G) is infinite.

Example 3.14. — Again, take A := Z/27Z and xo the unique non-trivial A-irreducible

character of A. Assume G is free generated by {z7°;...;23°}.
First, we compute some coefficients of (cX),, and (aX),. Observe:
1 1
gocha*(A,t) := Tt and  gocha,,(A,t) = T
Then ¢j, = d**, & =0, o =d"", and ¢}, =0.
Moreover,
dX(])n dr
1 ha*(A,t)) = ( ", 1 hay, (A t)) = » —t".
og(gocha® (A, 1)) Zn] ", log(gochay, (A, 1)) nzl% -

So, b2, o= /(204 1), B0 =0, B, — /(2n), and b, = 0.
For instance, if we apply Formula (3), one obtains when p # 3:
X0 d’ —d

— I _
az’ = , and a3 = 0.

3

If we apply Proposition 3.8, we obtain:

d*—d
aX* =0, and ai = 5

Observe that ¢y, , = d" and by, = d"/n. Theorem 3.12, allows us to check that
every eigenspace of .Z (A, G) is indeed infinite dimensional.

3.2.2. Non-free case. — Let us now construct some non-free examples that illustrate
Theorem B. For this purpose, consider A a subgroup of Aut(F'). We construct here a
finitely presented pro-p quotient G of F', such that A induces a subgroup of Aut(G).
We remind that F is the free pro-p group generated by {x;‘}xelrr(m;lgjgdx and de-
fine .# the free abstract group generated by the family {x;‘}x;j. Assume also that the

action of A is diagonal over {z}}, i.c. for all § in A, §(a)) = (z))¥).
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Definition 3.15 (Comm-family). — The family (1;) e, < 7 is said to be a comm-
family if:

15
R Qj,
l] T ]i[ujv'yl € F’
=1

where v, and a;,, are integers, and u;, is a y-th commutator on {z}}.;, i.e. u;,, =
. . X
[21;. . .52y, ] where z; € {x]},;.

Proposition 3.16. — Let (I;)ei,y be a comm-family, and denote by R its normal
(topological) closure in F. Then for all 6 in A, 6(R) = R thus A induces a subgroup
of Aut(F/R).

Proof. — First of all, if u and v are elements in F, we write u¥ := v~ uw.

Assume [7;y] € R, where = and y are elements in {7 },.;. Observe the following identity:
L= [asyy '] = [y eyl
Therefore [2;y!] is in R. Remark also for all integers a:
9] = w3y s y]”

Thus by induction, we see that for all a € Z, the commutator [z;y?] is in R.
Finally, for all integers b, we also have:

[2%y] = [ 9] [ 0]
We conclude as before that [2%y] € R, for all integers b.
Then §(R) = R, for every 6 € A. O

a—1

Example 3.17. — Here assume ¢ is an odd prime that divides p — 1. Take F' a free
2 3

pro-p group with three generators: {z)°,z°, 2°}. Assume also that A acts diagonally

on the previous set.

Consider R the closed normal subgroup of F' generated by commutators l; :=

[x’l‘o;xf%] and ly := [x’l‘o;xfg]. By Proposition 3.16, the group A induces a subgroup
of Aut(G). Since G is mild (see for instance [7]), we have cd(G) = 2 and:
1 1

ha.,(F,, t) = = .
goe aXO( P ) Xeul,xo (an t) l—t—t+¢
Thus by Theorem B, we conclude that every eigenspace of Z(F,, G) is infinite dimen-
sional.

3.3. FAB quadratic mild examples. — Let K be a quadratic imaginary extension
over Q, with class number coprime to p. Denote by S := {py;...;ps} a finite set of tame
places of K, i.e. for p € S, Nkjg(p) = 1 (mod p), and assume that S is stable by A.
We define Kg the p-maximal unramified extension of K outside S. Set G := Gal(Kg/K)
and A := Gal(K/Q). Again, fix y( the non-trivial character of A over F,. The group A
acts on (G, and thanks to Class Field Theory, the group G has the FAB property: every
open subgroup has finite abelianization.

Write U, for the unit group of the completion of K at the place p € S. We define the
element X, € &1(F,, G) as the image, given by Class Field Theory, of a generator of U, /Uy .
Then (see for instance |23, Theorem 2.6|), the set {X,}yes is a basis of & (F,, G).
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Denote by x, an element in G that lifts X,,. We introduce F', the free pro-p group
generated by z,. Koch [13, Chapter 11| gave a presentation of G, with generators {z}es
and relations {l,},es verifying:

ly, = H[:vpi,aspj]“j(") (mod F3(F,)), where a;(i)e Z/pZ.

J#i
The element a;(i) is zero if and only if the prime p; splits in k]{jpj} /k, where k:fp} is the
(unique) cyclic extension of degree p of k unramified outside p. This is equivalent to

pgpj—l)/P =1 (mod pj)’

where p; is a prime in Q below p;.

From now, we assume that this presentation is mild and quadratic (the relations
are all of weight 2), which means that we have the following isomorphisms of F,[A]-
modules:

d
&(F,) = P X, F,, and R(F (2% X,,],Xpl]>19‘
i=1

i=1 J#i
Denote by i (resp. s), the number of inert or totally ramified (resp. totally split) primes
below S in Q, then d = r = | S| := i + 2s. Recall that for every x:
d¥ = dimg, &1 (F,)[x], and r*:=dimg, R(F,)[x].

By [9, Theorem 1| and Class Field Theory, we obtain:

1

d*=i+s (resp. r' =i+s) and d¥° =s (resp. rX° = s).

Proposition 3.18. — We have the following equalities of series:
1
1—(i+ s+ sxo)t+ (i+s+sxo)t?
1
1—st—it?+ (s +i)t*
Consequently, the action of A on G is not trivial if and only if at least one place above S
in Q totally splits in K.

gocha*(F,,t) :=

gocha,, (Fp, t) ==

Proof. — Here, the relations have all weight 2, so:
i) =1 = (d" + dxo)t + (r* +r¥x)t? =1 — (i + 5 + sxo)t + (i + 5 + sxo)t>
Since the presentation is mild, we conclude using Proposition 3.3. O]

Remark 3.19. — Before giving examples, let us add some complements.

— The F,[A]-module structure of & (F,) (or R(F,)) gives us the integers i and s.

— If every place p above S is inert or totally ramified in K, then Gal(Qg/Q) and G :=
Gal(Kg/K) admit the same number of generators. Then Gras |9, Theorem 1|, showed
that Gal(Qs/Q) and G are isomorphic, so the action of A over G is trivial.

— Assume now that all places in Q below a set of primes S are totally split in K.
If Gal(Qg/Q) is mild, Rougnant in [23, Théoréme 0.3] gave a criterion to also
obtain Gal(Kg/K) mild.

Ezxample 3.20. — We give explicit arithmetic examples where G is mild and defined by
quadratic relations:
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1. We study the following example given by [26, Example 3.2|: let p = 3, K := Q(4),
and consider the set of primes: S := {q; := 229, ¢, := 241}. These primes totally
split in K. and the places above S (in K) are given by:

S = {py:= (24 15i),p1 := (2 — 153),ps := (4 + 153),ps := (4 — 157)}.
The group G := Gal(Kg/K) is mild quadratic. Then by Proposition 3.18:
1 1
d hay,(F,, t) = ———.
oot 2 oge o gochat) = 50
However, the polynomial 1 — 2t + 2t* admits only non real roots, so we can not apply
Theorem B.
Observe by [13, Example 11.15], that the group Gal(Qg/Q) is finite.
2. |23, Part 6]: Take p = 3, K := Q(v/—5), and S := {61;223;229;481}. The Class
group of K is Z /27, the primes in S are totally split in K, and the groups Gal(Qg/Q)

and G := Gal(Kg/K) are both mild quadratic. Therefore, by Proposition 3.18, we
obtain:

gocha™(IF,, t) =

. 1 1
gocha*(F,,t) = T (05 dxo)t + P2 and gocha,,(F,,t) = ey
By Theorem B, the graded spaces Z(F,, G)[xo] and -Z(F,, G)[1] are both infinite
dimensional.

3. We enrich the example given in [11, Part 2.1]: Consider p = 3, K := Q(+/—163),
and T := {31,19,13,337,7}. The class group of K is trivial, Gal(Qr/Q) is mild, and
the primes in 7" are inert in K. Therefore by [9, Theorem 1], the group Gal(Ky/K)
is mild (in fact, it has the same linking coefficients as Gal(Q7/Q)).

Observe that 43 is totally split in K, so we take {pg, pg} to be the primes in K
above 43. Consider now S := T U {pg; ps}. By [26, Corollary 4.3], the group G :=
Gal(Kg/K) is mild quadratic. Proposition 3.18 gives us

1 1
ha*(F,,t) := d ha, (F, t) := :
gocha® (Fy 1) 1= 6+ xo)t+ 6+ 0 9% B t) = T

Therefore, by Theorem B, the graded spaces .Z(F,, G)[1] and Z(F,, G)[xo] are

infinite dimensional.

Remark on lower p-central series and mild groups

Assume here that G is a finitely presented pro-p group, and ¢ divides p — 1. We
define the lower p-central series of G by:

G{l} = G, and G{n+1} = G]{)n}[G{n}; G]

Remark that @, (G n}/Gn+1y) is an Fy[t][A]-module, where [F,[t] is the ring of poly-
nomials over [Fy,.

Furthermore, if we assume G mild (see [17, Definition 1.1]), Labute showed in [17,
Part 4], that the lower p-central series come from the filtered algebra defined by Al(Z,, G)
endowed with the filtration induced by {Al,)(G) = ker(Al(Z,,G) — Fp)" }pen. Addi-
tionally, the set @, .(Gn}/Gni1y) is a free Fy[t]-module. Since G is finitely generated,
we introduce:

ag,y = ranks, (G /Gurny)[x],  and  ¢f,, = rankp, (Al (G)/Alni1y (G))[x].
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If we replace ay,(Z,) (vesp. cn(Zy)) by agny (resp. cqyy), then the results of this paper

can be adapted for lower p-central series. Moreover, extending [17, Corollary 2.7| in an
equivariant context, we can deduce a relation between the coefficients c¢X and a%‘n}.
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